Investigation par la simulation numérique de nouvelles pistes thérapeutiques contre les cancers à tumeurs solides

vers une application au cas des gliomes

Angélique Stéphanou

Laboratoire TIMC-IMAG, UMR CNRS 5525 Equipe DynaCell

Angelique.Stephanou@imag.fr

A. Stéphanou (TIMC-IMAG)

Modélisation Cancer & Thérapie

Lyon, 10 Juin 2010 1 / 34

- Contexte
- 2 Modèle
- 3 Résultats
- Cas des gliomes

э

Contexte Modèle Résultats Cas des gliomes

3

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

Les tumeurs solides

Les cancers à tumeurs solides (carcinomes et sarcomes) représentent 90 % de tous les cancers.

Les tumeurs solides

Les cancers à tumeurs solides (carcinomes et sarcomes) représentent 90 % de tous les cancers.

Intérêt pour les mathématiques

• développement par phases bien différenciées,

Les cancers à tumeurs solides (carcinomes et sarcomes) représentent 90 % de tous les cancers.

Intérêt pour les mathématiques

- développement par phases bien différenciées,
- phénomène de croissance marqué de transitions, d'états stables/instables,

Les cancers à tumeurs solides (carcinomes et sarcomes) représentent 90 % de tous les cancers.

Intérêt pour les mathématiques

- développement par phases bien différenciées,
- phénomène de croissance marqué de transitions, d'états stables/instables,
- processus complexe impliquant de nombreux acteurs (variables),

Les cancers à tumeurs solides (carcinomes et sarcomes) représentent 90 % de tous les cancers.

Intérêt pour les mathématiques

- développement par phases bien différenciées,
- phénomène de croissance marqué de transitions, d'états stables/instables,
- processus complexe impliquant de nombreux acteurs (variables),
- nécessité d'identifier l'importance de chacun par l'analyse théorique.

Les différentes phases du développement tumoral

- croissance avasculaire,
- hypoxie cellulaire et production de VEGF,
- vascularisation tumorale et reprise de croissance,
- invasion tumorale et métastatisation.

Contexte

Réseau vasculaire normal vs tumoral

Réseau normal

- réseau structuré
- vaisseau mature (vert)
- couverture des péricytes (rouge)

Contexte

Réseau vasculaire normal vs tumoral

Réseau normal

- réseau structuré
- vaisseau mature (vert)
- couverture des péricytes (rouge)

Réseau tumoral

- réseau anormal, dense et tortueux
- vaisseau immature et perméable (vert)
- peu de péricytes (rouge)

Contexte

Thérapies

VDAs

(agents de destruction vasculaire) cible = vaisseaux

Chimiothérapie

molécules cytotoxiques cible = cellules cancéreuses

∃ ► < ∃ ►</p>

A B > A
 A
 B > A
 A

э

Couplage des thérapies

L'utilisation des VDAs permet de normaliser temporairement le réseau vasculaire, ce qui permet d'améliorer transitoirement mais significativement la pénétration des molécules cytotoxiques au sein de la tumeur.

Couplage des thérapies

L'utilisation des VDAs permet de normaliser temporairement le réseau vasculaire, ce qui permet d'améliorer transitoirement mais significativement la pénétration des molécules cytotoxiques au sein de la tumeur.

"Fenêtre thérapeutique"

Les éléments du problème

Effets des médicaments

э

Les éléments du problème

э

Les éléments du problème

э

э.

< 67 ▶

< 🗗 🕨

-

3

Repésentation simplifiée du problème

- espace de simulation
- condition initiale (tumeur non vascularisée)

Variables du modèle

c(x, y, t): concentration du VEGF produit par les cellules hypoxiques f(x, y, t): concentration de fibronectine dans le tissu m(x, y, t): concentration des métalloprotéïnases (MMNP) $n_i(x, y, t)$: cellules endothéliales

$$\frac{\partial c}{\partial t} = -\eta n_i c \tag{1}$$

$$\frac{\partial f}{\partial t} = \beta n_i - \gamma m f \tag{2}$$

$$\frac{\partial m}{\partial t} = \alpha n_i + \varepsilon \nabla^2 m - \nu m \tag{3}$$

Modélisation de l'angiogenèse

La migration des cellules endothéliales (n) est gouvernée par :

La migration des cellules endothéliales (n) est gouvernée par :

Formulation discrète

$$n_{i,j}^{t+1} = n_{i,j}^{t} P_0 + n_{i+1,j}^{t} P_1 + n_{i-1,j}^{t} P_2 + n_{i,j+1}^{t} P_3 + n_{i,j-1}^{t} P_4$$
(5)

où les P_i représentent les probabilités de migration fonctions des densités locales en VEGF (c) et fibronectine (f).

イロト 不得下 イヨト イヨト

La formulation discrète permet de décrire la migration de chaque cellule n_i en fonction des probabilités P_i qui traduisent les propriétés de l'environnement (favorable/défavorable)

FIGURE: Grille discrète pour le déplacement des cellules

VEGF

Le gradient de VEGF produit par les cellules tumorales :

- oriente la direction de migration des CEs
- stimule la prolifération des CEs et l'occurence des branchements

FIGURE: Probabilité de branchement en fonction de la concentration de VEGF

VEGF

Le gradient de VEGF produit par les cellules tumorales :

- oriente la direction de migration des CEs
- stimule la prolifération des CEs et l'occurence des branchements

FIGURE: Réseau vasculaire résultant

Limitation

Le réseau vasculaire résultant est homogène (vaisseaux de même rayon) et ne permet pas de simuler de façon réaliste **le transport** et **la diffusion** des molécules du traitement jusqu'à la tumeur.

Limitation

Le réseau vasculaire résultant est homogène (vaisseaux de même rayon) et ne permet pas de simuler de façon réaliste **le transport** et **la diffusion** des molécules du traitement jusqu'à la tumeur.

Il est nécessaire de rendre compte de **l'adaptation vasculaire** (dilatation et constriction des vaisseaux) fonction des propriétés rhéologiques du sang.

Modélisation du flux sanguin

Modélisation Cancer & Thérapie

・ 同 ト ・ ヨ ト ・ ヨ ト

17 / 34

3

Adaptation du réseau vasculaire

Stimuli hémodynamique et métabolique (Pries et col. 1998)

$$R_{t+1} = R_t + \Delta R$$

$$\Delta R = \underbrace{\log(\tau_w + \tau_{ref})}_{\text{tension de cisaillement}} - \underbrace{\log\tau_e P}_{\text{pression transmurale}} + \underbrace{k_m \log\left(\frac{Q_{ref}}{QH_D}\right)}_{\text{stimulus métabolique}} - \underbrace{k_s}_{\text{contractilité des péricytes}}$$

Réseau vasculaire avant adaptation

Modélisation Cancer & Thérapie

Adaptation du réseau vasculaire

Stimuli hémodynamique et métabolique (Pries et col. 1998)

$$R_{t+1} = R_t + \Delta R$$

$$\Delta R = \underbrace{\log(\tau_w + \tau_{ref})}_{\text{tension de cisaillement}} - \underbrace{\log \tau_e P}_{\text{pression transmurale}} + \underbrace{k_m \log\left(\frac{Q_{ref}}{QH_D}\right)}_{\text{stimulus métabolique}} - \underbrace{k_s}_{\text{contractilité des péricytes}}$$

Réseau vasculaire **après** adaptation

Modélisation de l'évolution tumorale

La tumeur est décrite à partir d'un **automate cellulaire**.

L'état de chaque élément $\mathbf{e} = (i,j) \in G$ de l'automate est défini par :

$$egin{array}{rcl} s: & G \longrightarrow \{0,1,..,4\} imes \mathbb{R}^4 \ & \mathbf{e} \longmapsto (s_1,s_2,s_3,s_4,s_5) \end{array}$$

- $s_1(\mathbf{e})$: type de cellule qui occupe l'élément,
- $s_2(\mathbf{e})$: temps écoulé depuis le début du cycle cellulaire
- $s_3(\mathbf{e})$: temps écoulé depuis l'entrée dans la phase G_0
- $s_4(\mathbf{e})$: concentration locale d'oxygène
- $s_5(\mathbf{e})$: concentration locale de chimiothérapie

Les différents états cellulaires

$s_1(\mathbf{e})$: type de cellule qui occupe l'élément

- 0 : vide
- 1 : prolifératives
- 2 : quiescentes
- 3 : apoptotique
- 4 : nécrotiques

Cycle cellulaire et hypoxie

 $s_2(\mathbf{e})$: temps écoulé depuis le début du cycle cellulaire $s_3(\mathbf{e})$: temps écoulé depuis l'entrée dans la phase G_0

Effet de l'hypoxie :

- Arrêt de la phase G₁
- Entrée en phase quiescente G₀
- Arrêt de la prolifération
- Possibilité de retourner à la phase G₁
- Mort si l'hypoxie devient trop longue (10 jours)

21 / 34

Diffusion de l'oxygène et des médicaments

- $s_4(\mathbf{e})$: concentration locale d'oxygène $s_5(\mathbf{e})$: concentration locale de chimiothérapie
- L'hématocrite (taux de globule rouge) est connu pour chaque vaisseau et permet d'évaluer l'oxygénation du tissu
- La concentration en médicaments dans le tissu est également évaluée à partir de la quantité transportée par les vaisseaux

Dynamique d'évolution tumorale

Les transitions entre états cellulaires sont conditionnées par :

- Ie cycle cellulaire
- la quantité locale d'oxygène
- la concentration de médicaments
- l'espace disponible

Lyon, 10 Juin 2010 23 / 34

< 🗗 🕨

-

3

Conditions initiales

- Tumeur vascularisée
- Réseau vasculaire homogène ou inhomogène
- Toutes les cellules sont prolifératives
- La phase du cycle est aléatoire

Thérapies

- Chimiothérapie : injection continue
- VDAs : injection bolus

Simulation des effets de la chimiothérapie

FIGURE: Comparaison de l'évolution tumorale avec et sans traitement.

Les effets de la chimiothérapie

- Protocole A : 5h d'injection une fois par semaine
- Protocole B : 10h d'injection une fois par semaine
- Protocole C : 10h d'injection une fois toutes les 2 semaines

Les effets de la chimiothérapie

- Protocole A : 5h d'injection une fois par semaine
- Protocole B : 10h d'injection une fois par semaine
- Protocole C : 10h d'injection une fois toutes les 2 semaines

Simulation des effets des VDAs

Modélisation Cancer & Thérapie

Lyon, 10 Juin 2010 28 / 34

Couplage des thérapies

< 一型

э

Couplage des thérapies

Modélisation Cancer & Thérapie

- Le modèle permet de tester différents paramètres liés aux thérapies : temps d'injection et fréquence
- les VDAs doivent être préférentiellement utilisés en post-chimio pour les réseaux vasculaires homogènes afin d'asphyxier les cellules cancéreuses restantes, plutôt qu'en début de thérapie ou seul pour ces réseaux
- Potentiel pour anticiper le succès d'un protocole et aider à la décision d'une stratégie thérapeutique
- Nouveau challenge en modélisation du cancer : aide aux cliniciens par les modèles et la simulation numérique

< 67 ▶

æ

- 5 à 10 nouveaux cas par an pour 100000 habitants
- aucun traitement et durée moyenne de vie de moins d'une année

- 5 à 10 nouveaux cas par an pour 100000 habitants
- aucun traitement et durée moyenne de vie de moins d'une année

Echec des thérapies

• impossibilité d'une exérèse totale de la tumeur par chirurgie

- 5 à 10 nouveaux cas par an pour 100000 habitants
- aucun traitement et durée moyenne de vie de moins d'une année

Echec des thérapies

- impossibilité d'une exérèse totale de la tumeur par chirurgie
- forte résistance à la radiothérapie (insensibilité due à l'hypoxie)

- 5 à 10 nouveaux cas par an pour 100000 habitants
- aucun traitement et durée moyenne de vie de moins d'une année

Echec des thérapies

- impossibilité d'une exérèse totale de la tumeur par chirurgie
- forte résistance à la radiothérapie (insensibilité due à l'hypoxie)
- difficulté pour les molécules chimiothérapeutiques à franchir la barrière hémato-encéphalique

- 5 à 10 nouveaux cas par an pour 100000 habitants
- aucun traitement et durée moyenne de vie de moins d'une année

Echec des thérapies

- impossibilité d'une exérèse totale de la tumeur par chirurgie
- forte résistance à la radiothérapie (insensibilité due à l'hypoxie)
- difficulté pour les molécules chimiothérapeutiques à franchir la barrière hémato-encéphalique
- apparition d'un phénotype tumoral hautement invasif provoqué par les traitements antiangiogéniques

Vers une gestion adaptative du problème par les outils de l'automatique

Principe

La commande prédictive permet

- d'anticiper les effets d'une action sur un système partiellement décrit,
- de corriger et/ou d'adapter l'action en fonction des observations et mesures effectuées sur le système.

Vers une gestion adaptative du problème par les outils de l'automatique

Principe

La commande prédictive permet

- d'anticiper les effets d'une action sur un système partiellement décrit,
- de corriger et/ou d'adapter l'action en fonction des observations et mesures effectuées sur le système.

La thérapie (action) est ajustée en fonction de la réponse du patient (système)

Collaborations

Modélisation mathématique

- M. Chaplain, The SIMBIOS Centre, University of Dundee, UK
- S. McDougall, Heriot-Watt University, Edimbourg, UK
- Automatique, commande prédictive
 - S. Chareyron, Laboratoire GIPSA, Grenoble
- Données expérimentales
 - F. Estève, B. van der Sanden, Grenoble Institut des Neurosciences

Remerciements

- Marga Pons-Salort (Master 2, MIIMB 2008-2009)
- Anne-Cécile Lesart (Master 2, MIIMB, 2009-2010)