Noscomial aspergillosis : state of the art

David W. Denning University Hospital of South Manchester The University of Manchester Myconostica Ltd

Size of aspergillosis problem globally

- Invasive aspergillosis ~ 4,000 cases/year in UK [60M population], >5M at risk in EU
- 2. Chronic pulmonary aspergillosis ~3M cases prevalence
- Cystic fibrosis >9,000 cases [15%+ Aspergillus infection or allergy of ~60,000 CF cases]
- 4. Asthma 197M in adults, of which ~10-20% severe, UK and USA have very high prevalence rates
- ABPA in asthma ~3M worldwide (2.1% of adults with asthma)
- Severe Asthma with Fungal Sensitisation (SAFS) -~6M worldwide (33% of 10% (severe only))

Invasive mould infections in Austria

Fig. 1. Overview of underlying diseases in 186 patients with invasive mould infections. AML, acute myelogenous leukaemia; SOT, single-organ transplantation; VRF, various risk factors (mainly Intensive Care Unit patients without underlying haematological malignancies); NHL, non-Hodgkin's lymphoma; ALL, acute lymphatic leukaemia; MDS, myelodysplastic syndrome; CLL, chronic lymphatic leukaemia; ST, solid tumour.

Perkhofer et al, Int J Antimicrob Ag 2010;64:1274

Aspergillus, IPA and COPD

MANCHESTER

~ 22% of *Aspergillus* in COPD = invasive aspergillosis

Aspergillus, IPA and COPD

	Wald	Р	OR
ICU admission	4.758	0.029	2.406
Accumulated dose of	6.213	0.056	2.987
to admission ^a Accumulated dose of	13.338	0.000	4.568
corticosteroids during admission ^b			
Antibiotic treatment* Constant	5.924 66.327	0.015	2.570 0.034

ICU, intensive-care unit.

^aIn the 3 months prior to admission.

^bFrom admission to the first clinical isolation of Aspergillus from LRT samples.

Aspergillus, IPA and COPD

<u>Clues to the diagnosis of IA</u>

- GOLD stage 3 or 4.
- Excess wheezing (consider tracheobronchitis)
- Worsening infiltrates in an 'exacerbation' (66%)
- Bilateral infiltrates (55%)
- Culture of Aspergillus
- High corticosteroid exposure recently
- Do NOT expect fever (38%), chest pain or haemoptysis

Invasive aspergillosis in COPD

Invasive aspergillosis in ICU

127 of 1850 (6.9%) consecutive medical ICU admissions with IA or colonisation (micro/histol).

- 89/127 (70%) <u>did not</u> have haematological malignancy
- 67/89 proven/probable IA, 33 of 67 (50%) COPD

Risk factors for invasive aspergillosis in ICU

Table 2. Risk of invasive aspergillosis among patients admitted to the intensive care unit (ICU; medical, mixed or surgical).

High-risk category

Neutropenia (neutrophil count, <500 neutrophils/mm³)

Hematological malignancy

Allogeneic bone marrow transplantation

Intermediate-risk category

Prolonged treatment with corticosteroids before admission to the ICU

Autologous bone marrow transplantation

Chronic obstructive pulmonary disease

Liver cirrhosis with a duration of stay in the ICU >7 days

Solid-organ cancer

HIV infection

Lung transplantation

Systemic diseases requiring immunosuppressive therapy

Low-risk category

Severe burns

Other solid-organ transplant recipients (e.g., heart, kidney, or liver transplant recipients)

Steroid treatment with a duration of ≤7 days

Prolonged stay in the ICU (>21 days)

Malnutrition

Post-cardiac surgery status

Meersseman, Clin Infect Dis 2007;45:205

Radiology completely unhelpful in suspecting the diagnosis

Meersseman, Clin Infect Dis 2007;45:205

Distribution of IA cases Risk Prediction based on cases numbers and risk

<u>Limitations of current diagnostics</u> <u>for aspergillosis</u>

a) slow
b) insensitive
c) imprecise (species, resistance)

Early diagnosis of invasive aspergillosis is very important for survival

Von Eiff et al, Respiration 1995;62:241

Pace of progression of IPA

Survival from invasive aspergillosis [Amphotericin B + itraconazole era]

Invasive aspergillosis in ICU

MANCHESTER 1824 Vandewoude et al, Critical Care 2006;10:R31.

<u>Limitations of current diagnostics</u> <u>for aspergillosis</u>

a) slow
b) insensitive
c) imprecise (species, resistance)

IA in non-neutropenic patients in Switzerland

Variable	IA dia <u>post-r</u> N=16 n	gnosis <u>nortem</u> %	IA dia <u>ante-</u> N=26 n	ignosis mortem %	OR
Age (median, IQR)	65	57-71	58	48-63	2.1‡
Male gender	13	81.3	19	73.1	0.6
Cancer	7	43.8	6	23.1	2.6
Transplantation	3	18.8	10	38.5	0.4
Chronic lung disease	5	31.3	15	57.7	0.3
ICU stay	6	37.5	12	46.2	0.7
Mechanical ventilation	6	37.5	8	30.8	1.4
Prednisone	12	75.0	12	46.2	3.5
Immunosuppression	4	25.0	7	26.9	0.9
CRP mg/µI (median, IQR)	74	22-187	20	0-183	1.0†
tper 10 years older					

Garbino et al, Clin Microbiol Infect 2011 in press

Respiratory samples +ve for Aspergillus in ICU

Vandewoude KH. Critical Care 2006;10:R31

Respiratory samples +ve for Aspergillus in ICU

MANCHESTER

Vandewoude KH. Critical Care 2006;10:R31

Aspergillus Antigen in BAL in ICU

- 110 patients out of 1109 ICU admissions assessed
- 26 proven IA cases
- Sensitivity and specificity of BAL GM detection was 88% and 87%
- 11 of 26 (42%) BAL culture positive
- Serum GM negative in 100%

Aspergillus Antigen in BAL

- 13/17 (76%) in acute leukaemia with CT abnormality
- 20/20 (100%) in haem-onc pts with IPA
- 37/49 (76%) in HSCT & haem-onc with IPA
- 6 of 11 (55%) immunocompromised (8 of 11 +ve by PCR)
- 5/20 (25%) in suspected IFIs

 17/17 (100%) in neutropenic patients before antifungal Rx, 0% after 3d antifungal therapy

MANCHESTER Becker, Br J Haem 2003;121:448; Sanguinetti, JCM 2003;41:3922; Musher, JCM 2004;42:5517.

Real-time PCR for Aspergillus spp.

MANCHESTER 1824

Products

the experts in fungal diagnostics

Available for research

the experts in fungal diagnostics

CF and sputum culture

MANCHESTER

Baxter, BTS 2010 Abstr 519

Processing CF sputum for culture and PCR - with dithiothreitol at 37°C for 30 mins and sonication

	PCR Positive	PCR Negative
Culture Positive	33	0
Culture Negative	53	31

PCR is 260% more sensitive than culture; p < 0.0001

Detection of Aspergillus in respiratory fluids is superior to culture

DNA can be used for direct resistance detection

MANCHESTER 1824

Denning, submitted

Bronchoscopy in an ABPA patient on no treatment

Bronchoscopy in an ABPA patient on no treatment

Abundant mixed inflammatory cells with ciliated columnar cells and a few fungal hyphae, in keeping with *Aspergillus*. A few Charcot leyden crystals. No maligant cells.

UHSM, unpublished

Sputum and BAL currently processed using BSOP57

Role of Aspergillus PCR in BAL/sputum

Given a typical sensitivity and specificity, and a high prevalence, a positive predictive value is more useful than the negative predictive value

Sensitivity	94%	Pr			lence	
Specificity	91%		1%	10%	20%	40%
		PPV	9%	54%	72%	87%
		NDV	100%	99%	98%	96%

The experts in fungal diagnostics

MycAssay[™] Aspergillus

Paraffin-embedded tissue PCR

- 50 tissue samples from 50 patients
- Hyphae typical of Aspergillus
- Deparaffinization of tissue sections with xylene and methanol
- MycXtra DNA extraction
- Phenol/chloroform purification
- MycAssay real time PCR
- Confirmation by ITS sequencing of A. fumigatus
- All 50 had a positive PCR signal with Cts from 23.5 – 32.1

Chander et al, submitted for publication

the experts in fungal diagnostics

PCR diagnosis of IA in blood Meta-analysis

MANCHESTER 1824

Mengoli et al, Lancet ID 2009;9:89

MycAssay[™] Aspergillus: Analytical credibility

Table 1. Real-time PCR detection of varying concentrations freshly extracted

Aspergillus fumigatus DNA

	DNA concentration	Reaction input	Reaction input	MycAssay	In-House
Dilution	(genomes µl ⁻¹)	(genomes)ª	(rRNA copies) ^b	(Ct value)	(Ct value)
Neat	12000	120000	6360000	17.8	17.9
-1	1200	12000	636000	22.1	22.4
-2	120	1200	63600	26.0	26.1
-3	12	120	6360	29.3	29.8
-4	1.2	12	636	32.1	33.5
-5	0.12	1.2	63.6	34.5	37.3

^a10μl input volume

^bBased on the mean number of rRNA copies being 53 per genome (Herrera et al.

2009)

White L. et al, Manuscript submitted

the experts in fungal diagnostics

MycAssay[™] Aspergillus: Analytical Credibility

Species (Input per reaction)	MycAssay™ Aspergillus	"In-house" PCR
A. fumigatus (250-10 ⁶ copies)	21.6 to 32.7 cycles	23.7 to 35.7 cycles
A. fumigatus (5000 copies)	29.7 cycles	32.2 cycles
A. flavus (5000 copies)	27.7 cycles	30.3 cycles
A. terreus (5000 copies)	29.6 cycles	34.5 cycles
A. niger (5000 copies)	31.1 cycles	36.0 cycles
A. nidulans (5000 copies)	29.1 cycles	33.5 cycles
A. versicolor (5000 copies)	31.0 cycles	36.2 cycles
A. sclerotiorum (5000 copies)	27.0 cycles	34.4 cycles
A. glaucus (5000 copies)	29.3 cycles	45.0 cycles

White L. et al, Manuscript submitted

the experts in fungal diagnostics

Diagnosis of IPA in leukaemia using blood PCR

130 haematology patients Itraconazole prophylaxis for AML and HSCT Fluconazole prophylaxis for others (ALL, lymphoma etc) EORTC/MSG criteria applied 2x weekly sampling

	Sensitivity (%)	Specificity (%)	Positive likelihood ratio*	Negative likelihood ratio	Diagnostic odds ratio†
Single non-reproducible positive PCR result	87.5	98	2.7	0.18	15
Single reproducible positive PCR result			3.8	0.18	21.1
Multiple positive PCR results	75	99	8.3	0.27	30.7

*Likelihood of a positive result in a patient with proven/probable disease versus positive result in a patient without evidence of disease.

[†]Positive likelihood ratio /negative likelihood ratio.

Barnes et al, J Clin Pathol 2009;62:64

Diagnosis of IPA in leukaemia using blood PCR

Barnes et al, J Clin Pathol 2009;62:64

PCR detects disease early: indicator of IFI & earlier than GM for patients on prophylaxis

Figure 1 Persistently detected DNAemia in a series of six patients diagnosed with IA. GM = galactomannan; HRCT = high resolution computed tomography; IA = invasive aspergillosis; PCR = polymerase chain reaction.

Meije et al, BMT 2010;1

Role of Aspergillus PCR in serum

Given a typical sensitivity and specificity, and a low prevalence, a negative predictive value is more useful than the positive predictive value

The experts in fungal diagnostics

Diagnostic approach to IPA in leukaemia using blood PCR

Strategy 1 - screen all patients with serum/blood PCR +/- GM

Strategy 2 - screen only febrile patients with serum/blood PCR +/- GM

Strategy 3 - CT scan + bronchoscopy in those with pulmonary features / persistent fever

Benefits of screening with serum PCR, with high negative predictive value

- Fewer missed diagnoses
- Faster diagnosis with better outcomes
- Reduced cost of prophylactic antifungal therapy Saving of ~€000's/patient/per year to hospital
- Patient not taking unnecessary medication

Reduce likelihood of fungal resistance being developed

Reduce adverse events and potential for drug interactions

Antifungal therapy of invasive aspergillosis

Treatment

Open study of invasive aspergillosis with caspofungin as primary therapy

61 pts with chemotherapy or auto HSCT received Caspofungin 70 then 50mg IV daily

	MITT p	MITT population $(N=61)$			
Response	n	% (95% CI)			
Complete	1	2 (0-9)	1228		
Partial	19	31 (20-44)	33%	response rat	
Stable disease	9	15 (7-26)	-		
Disease progression	31	51 (38-64)			
Not evaluable ^a	1	2 (0-9)			
^a Patient refused treatment.					
Neutropenia at enrolment (no	t assessable in one	case)			
no			5/9 (56)	0.14	
yes		15	/51 (29)		
9	Survival by	dav 84 = 33	/61 (54	%)	

MANCHESTER

Viscoli et al, JAC 2009;64:1274

MANCHESTER 1824

Herbrecht at al, New Engl J Med 2002:347:408-15

Open study of invasive aspergillosis with caspofungin as primary therapy

42 pts with allo HSCT , 24 eligible, Rx Caspofungin 70 then 50mg IV /d

Unrelated donors in 16 patients; acute or chronic GVHD was present in 15, 12 patients were neutropenic (<500) at baseline,

Median duration of caspofungin treatment was 24 days.
At EOT, 10 (42%) had complete or partial response, 12 (50%) had progressing disease.
At 12 wks, 8 patients (33%) had complete or partial response.

Survival rates at week 6 and 12 were 79 and 50%, respectively.

MANCHESTER 1824

Herbrecht at al, New Engl J Med 2002:347:408-15

Impact of voriconazole in real life

MANCHESTER 1824

Nivoix et al, Clin Infect Dis 2008;47:1176

Combination therapy

Combination therapy - invasive aspergillosis

Retrospective AmB failures Most HSCT 30/47 proven IA

Multivariate analysis P=0.008 for combination and survival

Curves came together later

MANCHESTER

Marr et al, Clin Infect Dis 2004:39:797

Combination therapy - invasive aspergillosis

Large retrospective series showed no benefit of AmB or voriconazole combination with echinocandin

Prospective RCT in progress comparing voriconazole and anidulafungin with voriconazole alone

Antifungal resistance

Azole resistance in *A. fumigatus* in Manchester 1997-2009

MANCHESTER 1824

Bueid, J Antimicrob Chemother 2010;65:2116. Howard et al, EID 2009; 15:1068

Typing of itraconazole resistance in A. fumigatus

Howard et al, EID 2009; 15:1068

MANCHESTER

Azole resistance in *A. fumigatus* in US

<u>California</u> Itraconazole resistance 13 of 25 (52%) in 2002-2009, compared with 13 of 126 (10%) in 1987-2001

<u>Detroit</u> Triazole resistance in 18 of 37 (49%) in 2009, compared to 11 of 45 (24%) in 2003

MANCHESTER

Martinez, 4th AAA 2010 Abstr 30; Krishnan-Natesan , ICAAC 2010; Abstr M-389

Costs of IA

- In 1996, per case cost in US was \$62,500 per hospital stay so cost to the USA was ~ \$674M
- In 1998, per case cost was \$72,792: \$36,867 was extra hospitalization cost attributable to IA
- In 2000, in children IA cost \$49,309 compared with immunocompromised children without IA \$9,035
- In 2003 in Netherland, IA cost ~€32,651 (voriconazole)
- In 1998-2005 in Turkey, each case of IA cost US\$49,336, of which 96% was the cost of drugs

Conclusions

- Corticosteroid Rx and critical illness are significant risk factors for IA
- Many cases still not diagnosed until after death, perhaps majority
- PCR is more sensitive than culture in respiratory fluids, tissue biopsy and blood
- Serum PCR may be positive early and in spite of antifungal prophylaxis in haematology patients
- Voriconazole remains the antifungal agent of choice
- Azole resistance an increasing problem

