Pseudomonas aeruginosa: from environment to humans

Finovi Thursday 9th december 2010, Lyon

Jean Freney

UMR 5557 – CNRS Ecologie Microbienne University of Lyon 1

Pseudomonas aeruginosa

• Carle Gessard (1850-1925)

PHYSIOLOGIE PATHOLOGIQUE. — Sur les colorations bleue et verte des linges à pansements. Note de M. C. GESSARD, présentée par M. Pasteur.

 « Deux cas de coloration bleue et verte des pansements se produisaient en octobre dernier, dans le service de M. le D^r Chauvel, au Val-de-Grâce. Les linges me furent remis, et j'entrepris de vérifier l'origine parasitaire du phénomène, par la méthode des cultures de M. Pasteur. J'ai pu soler de la sonte en organisme qui, après un grand pombre d'ensemencements successifs, se montre constant dans sa forme d'anssa gates on physiologique, la production de pigment, pour les différents liquides de culture. Cet organisme est incolore, globuleux, de 1 à 1,5 millième de millimètre; il est aérobie et très mobile. On le cultive bien, entre 35° et 38°, dans l'urine neutralisée, la décoction de carottes. Il se développe également dans la salive, la sueur, les liquides albumineux, sérosité de vésicatoire, d'hydrocèle. La matière colorante bleue sécrétée est la pyocyanine de M. Fordos (²),

(1) Ce travail a été fait au laboratoire de M. Schützenberger, au Collège de France.

- (2) Comptes rendus, t. LI, p. 215, et t. LVI, p. 1128.
- C.R.Séances Acad. Sci., 1882; p. 536-538 (Série D)

Pseudomonas aeruginosa

- Pseudomonas: *false unit*, from the Greek pseudo and the Latin monas
- aeruginosa: *copper rust (*Latin)

pyocyanin

Pseudomonas aeruginosa

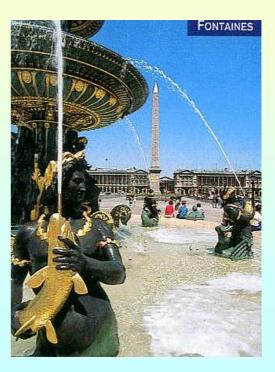
- Gram negative bacilli
- Unipolar motility

Pseudomonas aeruginosa

• Strict aerobes

Pseudomonas aeruginosa

Identification



Pseudomonas aeruginosa

Freshwater: from lakes to hot tubes

inhalation, aspiration, direct application to intact or injured skin, invasion of respiratory tract

Skin and soft tissues infections

• *Pseudomonas* dermatitis/folliculitis "Hot Tub" folliculitis

Skin and soft tissues infections

 Pseudomonas dermatitis/folliculitis "Hot Tub" folliculitis

Pseudomonas dermatitis/folliculitis

Exposure at a water slide Salt Lake City, Utah 265 cases / 650

CDC, Morb. Mortal. Wkly.Rep. 1983;32:425-427).

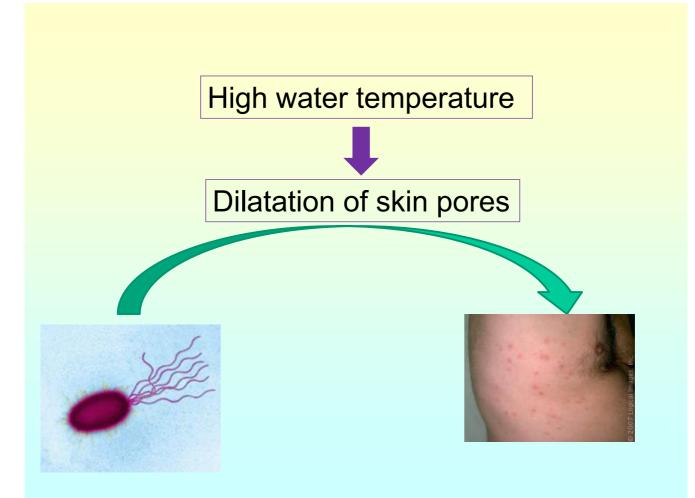
Overgrowth of Pseudomonas aeruginosa

- Faulty maintenance of water in man-made pools
- Reduce the quantity of the bacterial organisms in the water
- Recommendations for treatment of pool water
 - maintaining the pH between 7.2 and 7.8
 - free-chlorine levels greater than 0.5 mg/liter.
- Some strains may be resistant to recommended chlorine concentrations (Khabbaz *et al.*, Am. J. Med. 1983;74:73-77).

Spas, whirlpools, hot tubes

Folliculitis

More outbreaks than



Folliculitis

Environment more conducive to the growth of micro-organisms

Difficulty in maintaining a stable free-chlorine levels

higher temperature of the water mechanical agitation and aeration higher concentration of organic material (larger number of bathers per volume of water)

Pseudomonas "hot-foot" syndrome

- Nodular lesions
- Soles of the feet

- Abrasive nature of the pool floor
 - Fiorillo et al. N. Engl. J. Med. 2001;345:335-338

Acute diffuse otitis externa (swimmer's ear)

• More common in swimming pools users than whirlpool and spa users

 Water sport athletes (++): swimmers, divers, surfers, sailboarders, and kayakers in polluted bodies of water

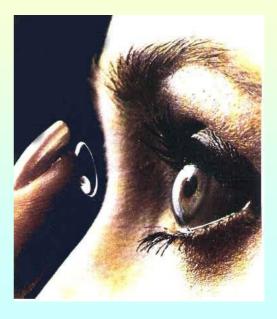
Acute diffuse otitis externa (swimmer's ear)

• Prolonged exposure to water causes maceration of the epithelial tissue in the ear canal and removes the ear wax

Aids: in repelling water maintaining an acidic pH to prevent bacterial and fungal growth

P. aeruginosa pneumonia

Whirlpool spa for 90 minutes



Rose et al. JAMA, 1983;250:2027-2029

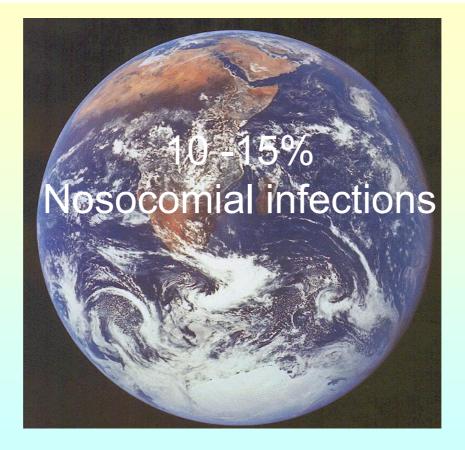
P. aeruginosa keratitis

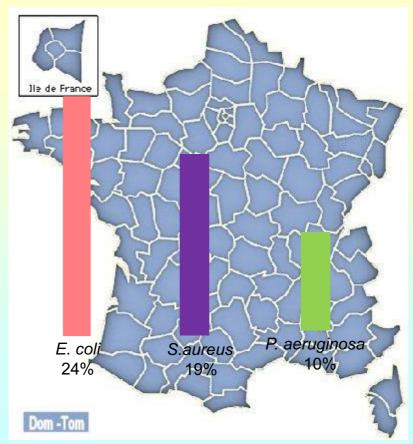
• Contact lens wearers

P. aeruginosa a major hospital pathogen

• patients with compromised host defense mechanisms

P. aeruginosa


• most common pathogen isolated from patients hospitalized longer than one week



P. aeruginosa

Hospital Infections	Details and Common Associations	High-risk Groups
Pneumonia	Diffuse bronchopneumonia	Cystic fibrosis patients
Septic shock	Associated with skin lesion ecthyma gangrenosum	Neutropenic patients
Urinary tract infection	Urinary tract catheterization	
Gastrointestinal infection		
Necrotising enterocolitis (NEC)	NEC, especially in premature infants and neutropenic cancer patients	
Skin and soft tissue infections	Hemorrhage and necrosis	Burns victims and patients with wound infections

Pseudomonas aeruginosa

2007: National prevalence survey of nosocomial infections

P. aeruginosa & nosocomial infections

• Intensive care units (ICUs)(high endemic potential): 18 %

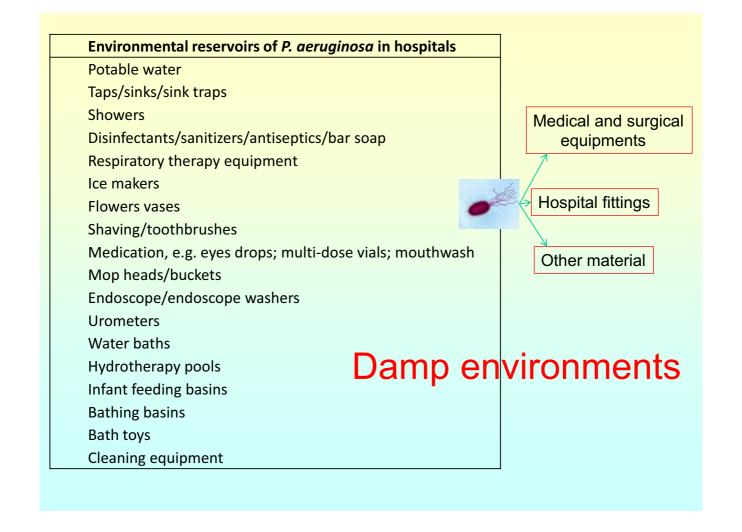
• VS

- Surgical and non-surgical units: 6%
 - Bertrand et al. Clin. Microbiol. Infect. 2001;7:706

P. aeruginosa & nosocomial infections

- Mortality rates: 40% to more than 60%
 - Bacteraemic nosocomial pneumonia
 - Ventilator-associated pneumonia

Recovery of *P. aeruginosa* in humans


50-60%

2-10%

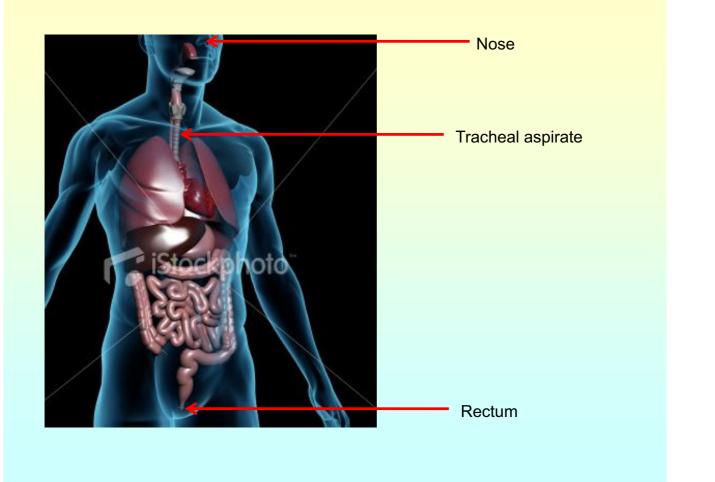
Burns

Scabs

• As a result, many hospital hygiene teams place great importance on the role of water in all infections with *P. aeruginosa*, especially in ICUs.

Intensive Care Med (2008) 34:1428–1433 DOI 10.1007/s00134-008-1110-z

ORIGINAL


@ OpenAccess

Pascal Cholley Michelle Thouverez Nathalie Floret Xavier Bertrand Daniel Talon The role of water fittings in intensive care rooms as reservoirs for the colonization of patients with *Pseudomonas aeruginosa*

Clinical samples

- taken on admission of the patient in the ICU
- and one per week thereafter, throughout the patient's stay

• Colonization was defined as positive result for at least one sample

	Nose	Tracheal aspiration (TA)	Rectum	Nose + TA*	Nose + rectum*	TA + rectum*	Total (%)
Colonized patients (%)	21.9	32.2	27.4	13.7	4.1	0.7	100
Colonization at admission (%)	12.5	30	30	17.5	7.5	2.5	100
Colonization during hospitalization (%)	25.5	33	26.4	12.3	2.8	0	100

* : Simustanously positive samples

Distribution of first-positive screening sites upon admission and during hospitalisation in intensive care unit (X. Bertrand, personal comunication)

Incidence of colonization/infection

			Positive sample
			P. aeruginosa
ICU	Medical unit	69	8
123 patients			
	Surgical unit	54	9

Overall incidence of colonization: 13.8 per 100 patients admitted

Environmental samples

• taken once per week from the water fittings in each ICU room

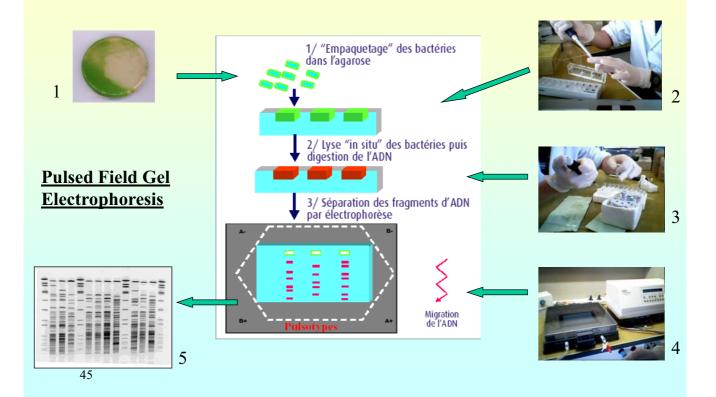
U-bend: 10 ml

Tap water: 150 ml

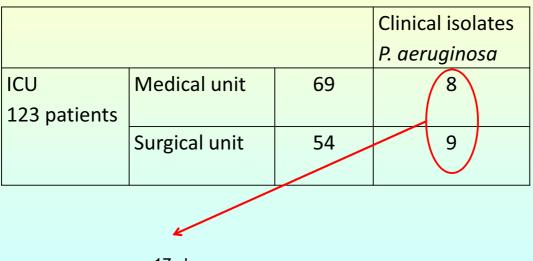
Water environment

			Positive sample
			P. aeruginosa
ICU	U-bends	224	193 (86.2%)
448 samples			
	Taps	224	10 (4.5%)

Pseudomonas aeruginosa


Identification




Macrorestriction profile

DNA macrorestriction profile

Molecular typing of clinical isolates

17 clones

Molecular typing of environmental isolates

ICU					
203 strains		54			
	82 pulsotypes	unique			
		28			
		multiple			

• Only one patient was colonized with a clone present in the water environment of his room.

Pseudomonas aeruginosa

• The water environment played only a minor role in the colonization/contamination of patients

U-bend: contamination +++

retro-colonization of the U-bend by the microflora present in wastewater pipes, via the biofilms

patients hospitalized in ICU						
Authors/year	Water samplings +	Patients +	% *			
Ferroni/1998	21/118 (17,7%)	3/14	21,4			
Berthelot/2001	34/NR	3/12	25			
Trautmann/2000	49/72 (68%)	2/14	14,2			
Reuter/2002	150/259 (57,9%)	5/17	29,4			
Vallés/2004	93/149 (62,4%)	16/39	41,0			
Blanc/2004	21/216 (10%)	36/132	27,3			
Trautmann/2005	60/143 (41,9%)	8/16	50			
Rogues /2007	65/673 (9,5%)	55/484	11,4			
Cholley /2008	193/224 (86,2%)	1/14	7,1			

Dolo of the water environment on the colonization of

*Patients colonized by a strain also found in the environment

Water fittings: colonization/infection of patients?

- Major role?
- Weak epidemiological link?
- Previous studies carried out during outbreaks

• The frequency of strains widely present in the environment (multiple clones) but never isolated from patients was high

Pseudomonas aeruginosa

- There may be two different genetic groups:
 - one group of strains that are mostly environmental and not very pathogenic in humans

• Valles et al. Intensive Care Med. 2004;30:1768

Pseudomonas aeruginosa

- There may be two different genetic groups:
 - one group of strains that are mostly environmental and not very pathogenic in humans
 - one group of strains better adapted to humans with a much higher pathogenic potential
 - Valles et al. Intensive Care Med. 2004;30:1768

ANTIMICROBIAL RESISTANCE INVITED ARTICLE

George M. Eliopoulos, Section Editor

Multiple Mechanisms of Antimicrobial Resistance in *Pseudomonas aeruginosa:* Our Worst Nightmare?

David M. Livermore

Antibiotic Resistance Monitoring and Reference Laboratory, Central Public Health Laboratory, Colindale, London, United Kingdom

Antimicrobial resistant rates (%) of *P. aeruginosa* clinical isolates (EARSS: European Antimicrobial Resistance Surveillance System)

Country	Proportion (%) of strains non-susceptible to:					
Country	Aminoglycosides ^a	Carbapenems ^b	Quinolonesc	Ceftazidime	Piperacillins	
Austria	11.2	13.7	17.9	9	7.1	
Switzerland	4.8	5.4	7.2	4.2	5	
Cyprus	25	21.1 _5	21.2	15.4	28.8	
Czech Republic	33.8	36	42.7	32.7	30	
Germany	20.3	31.5	35.7	24.4	48.5	
Denmark	2.4	3.9	9.1	4	4.8	
Spain	23.9	18.4	27.7	15.2	8.1	
Finland	8.7	9.4	10.9	7.7	7.3	
France	31.1	18.4	26.3	18.6	20.5	
Greece	51.9	50.5	51.9	44.8	38.4	
Croatia	43.4	28.1	33	20.5	30.2	
Hungary	34.4	21.3	29.5	15.3	16.8	
Ireland	12.5	11.2	20.5	10.3	11.8	
Israel	21.9	14.9	26.7	13.3	15.2	
Italy	30.1	32.1	39.1	41.4	27.2	
The Netherlands	9.8	5.4	9.4	5.6	5.2	
Norway	1.9	14.5	10.7	6.7	3.1	
Poland	40.3	22.4	40.3	22.7	35.8	
Portugal	18.2	16.1	23	20.9	15.8	
Sweden	0	9	10.3	9.6	3.1	
Slovenia	13.6	20.4	18.1	13.6	12.5	
Turkey	28.2	31	29.6	31.3	32.4	
United Kingdom	6.6	17.2	9.6	14.1	5.4	

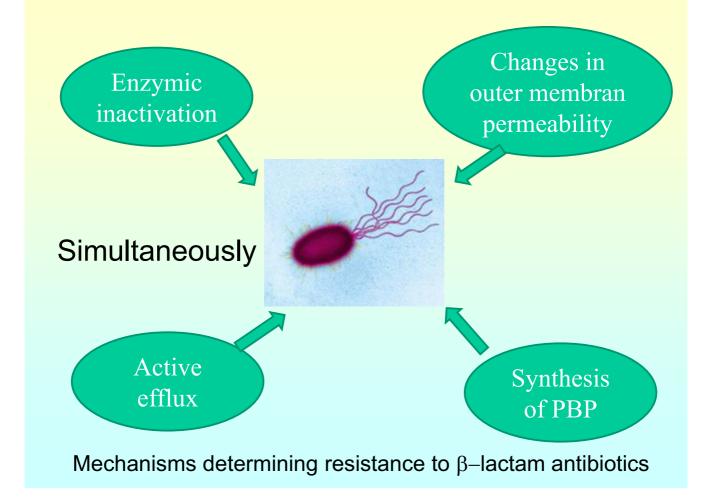
Souli et al. Eurosurveillance, 2008;13, 1-11

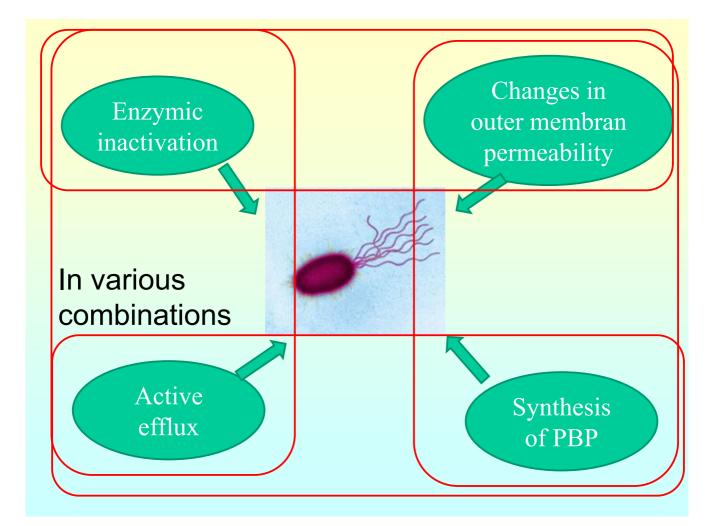
Antimicrobial resistant rates (%) of *P. aeruginosa* clinical isolates in France (EARSS: European Antimicrobial Resistance Surveillance System)

Aminoglycosides	Carbapenems	Quinolones	Ceftazidime	Piperacillins Pip/Tazo
31.1	18.4	26.3	18.6	20.5

Antimicrobial resistance in *P. aeruginosa*

- low permeability of its outer membrane (>> Enterobacteriaceae)
 - 1% of the permeability of *E. coli* outer membran
- naturally occuring chromosomal AmpC cephalosporinase
- efflux resistance (mexAB-OprM)


P. aeruginosa wild type


- Susceptible to
 - carboxypenicillins (carbenicillin, ticarcillin)
 - ureidopenicillins (azlocillin, piperacillin)
 - (some) third generation cephalosporins
 (ceftazidime, cefsulodine, cefoperazone)
 - fourth generation cephalosporins
 - monobactam aztreonam
 - carbapenems (imipenem, meropenem)

Antimicrobial resistance in *P. aeruginosa*

- Remarkable ability to acquire further resistance mechanisms to multiple groups of antimicrobial agents:
 - β-lactams
 - aminoglycosides
 - fluoroquinolones

P. aeruginosa

 Enzyme production is the major mechanism of acquired resistance to β-lactam antibiotics

Resistance to β -lactams due to β -lactamase production (1)

		Resistance to	Comment
AmpC β -lactamase (not inhibited	"low level	Aminopenicillins	Chromosomal
by β -lactamase inhibitors)	expression"	Most of early cephalosporins	
\square	Hyperproduction	Third generation	++
		cephalosporins	
Class A carbenicillin hydrolyzing		Carboxypenicillins	
β-lactamase		Ureidopenicillins	
(PSE: Pseudomonas specific		Cefsulodine	
enzyme:)(PSE-1, PSE-4, CARB-3,			
CARB-3)			
Class A ESBLs (SHV, TEM, VEB,		Carboxypenicillins	In vitro
PER, GES, IBC, BEL-types)		Ureidopenicillins	inhibition by
		Extended-spectrum	clavulanic acid &
		cephalosporins (ceftazidime,	tazobactam
		cefepime, cefpirome)	Chromosomal &
		Aztreonam	plasmid

Resistance to β -lactams due to β -lactamase production (1)

		Resistance to	Comment
AmpC β -lactamase (not inhibited	"low level	Aminopenicillins	Chromosomal
by β -lactamase inhibitors)	expression"	Most of early cephalosporins	
	Hyperproduction	Third generation	
		cephalosporins	
Class A carbenicillin hydrolyzing		Carboxypenicillins	
β-lactamase		Ureidopenicillins	
(PSE: Pseudomonas specific		Cefsulodine	
enzyme:)(PSE-1, PSE-4, CARB-3,			
CARB-3)			
Class A ESBLs (SHV, TEM, VEB,		Carboxypenicillins	In vitro
PER, GES, IBC, BEL-types)		Ureidopenicillins	inhibition by
		Extended-spectrum	clavulanic acid &
		cephalosporins (ceftazidime,	tazobactam
		cefepime, cefpirome)	Chromosomal &
		Aztreonam	plasmid

Resistance to β -lactams due to β -lactamase production (2)

		Resistance to	Comment
Class D β -lactamase (OXA:	Classical OXA	Carboxypenicillins	
oxacillinases)	enzymes (OXA-1,	Ureidopenicillins	
	OXA-2, OXA-10)	Not to ceftazidime	
	Ceftazidime	Ceftazidime,	Not suppressed
	hydrolyzing	cefotaxime,cefepime,	by clavulanic
	extended-	cefpirome, aztreonam and	acid &
	spectrum	moxalactam	tazobactam
	oxacillinases		(except OXA-18)
Class B MBLs* (IMP-type, VIM-	Carbapenemases	All β -lactams including the	Non inhibited by
type, SPM-1, GIM-1)	(Carbapenem	carbapenems (imipenem,	clavulanic acid &
	hydrolyzing	meropenem)	tazobactam
	enzymes)		Monobactam
			aztreonam not
			influenced

*metallo-β-lactamase

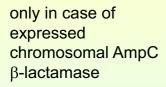
		Resistance to	Comment
Class D β-lactamase (OXA:	Classical OXA	Carboxypenicillins	
oxacillinases)	enzymes (OXA-1,	Ureidopenicillins	
	OXA-2, OXA-10)	Not to ceftazidime	
	Ceftazidime	Ceftazidime,	Not suppressed
	hydrolyzing	cefotaxime,cefepime,	by clavulanic
	extended-	cefpirome, aztreonam and	acid &
	spectrum	moxalactam	tazobactam
	oxacillinases		(except OXA-18)
Class B MBLs* (IMP-type, VIM-	Carbapenemases	All β -lactams including the	Non inhibited by
type, SPM-1, GIM-1)	(Carbapenem	carbapenems (imipenem,	clavulanic acid &
	hydrolyzing	meropenem)	tazobactam
	enzymes)		Monobactam
			aztreonam not
			influenced

Resistance to β -lactams due to β -lactamase production (2)

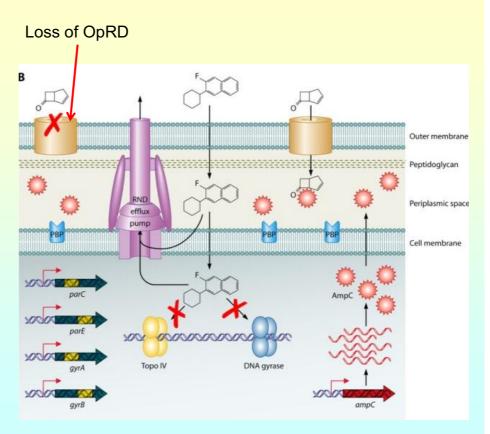
*metallo-β-lactamase

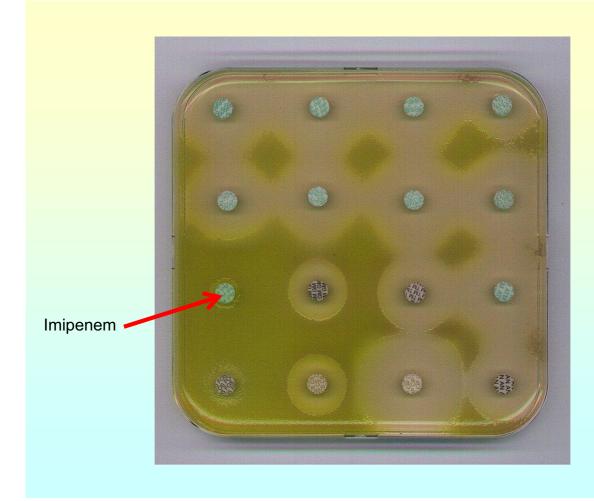
Resistance to β-lactams due to active efflux

- *P. aeruginosa* less susceptible than *Enterobacteriaceae* to antibiotics
- Low outer membran permeability (proteins with high molecular mass)
- Proteins (OprM, OprJ, OprN) act as components of active efflux systems


- Resistance determined by interplay between:
 - low membrane permeability
 - efflux of antimicrobial agents

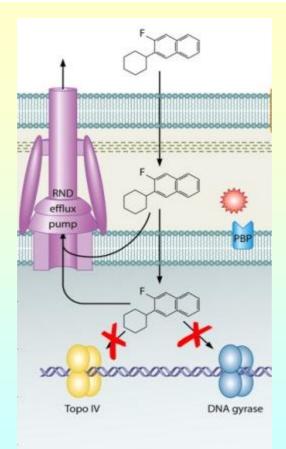
Structure and substrate specificity of the three-component active efflux systems in *P. aeruginosa*


Cytoplasmic Membrane pump	Periplas mic linker	Outer membrane channel	Substrate
MexB	MexA	OprMp	Quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, novobiocin, β -lactams except imipenem
MexD	MexC	OprJ	Quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, novobiocin, penicillins except carbenicillin and sulbenicillin, cefepime, cefpirome, meropenem
MexF	MexE	OprN	Fluoroquinolones, carbapenems
MexY	MexX	OprM	Quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, aminoglycosides, penicillins except carbenicillin and sulbenicillin, cefepime, cefpirome, meropenem


Resistance to β-lactams due to altered outer membrane permeability

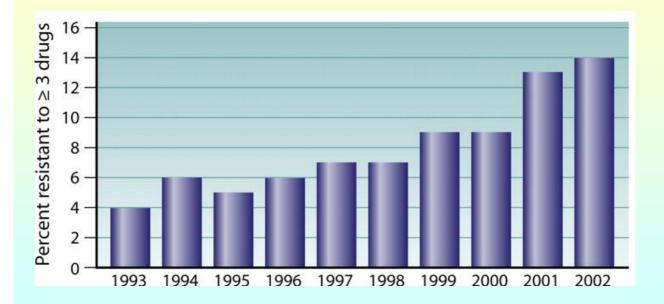
• Imipenem-resistant *P. aeruginosa*: deficiency of OprD (referred to as D2 porin)

close cooperation between these two mechanisms



Mechanisms of resistance to aminoglycosides

- Enzyme modification (major)
- Low outer membrane permeability
- Active efflux
- Target modification (rarely)

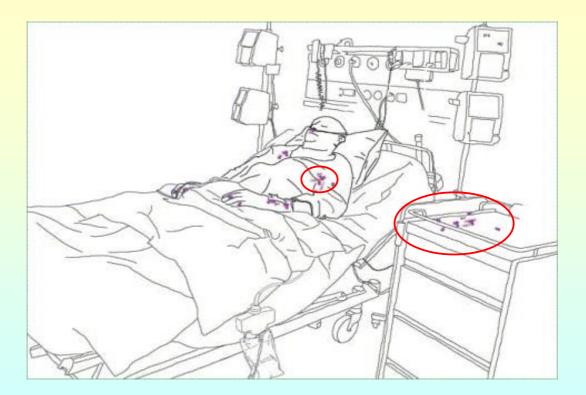

Mechanisms of resistance to fluoroquinolones

- Structural changes in target enzymes
 - DNA gyrase (or topoisomerase II): point mutations in gyrA/gyrb genes → low binding affinity to quinolone molecules
- Active efflux

Incidence of acquired-MDR

- P. aeruginosa: 0.1/1000 patient-days
- MRSA : 0.275/1000 patient-days
- ESBL-producing *Enterobacteriaceae*: 0.263/1000 patient-days
- Prevalence of MDR-PA: 10-15%

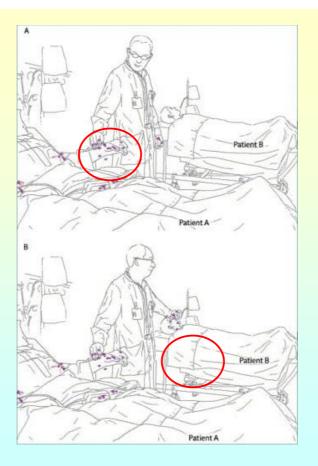
Prevalence of multidrug resistance among *P. aeruginosa* isolates from ICU patients in the USA (Lister *et a*l. Clin. Microbiol. Rev. 2009;22:582-610)



Molecular epidemiology of multidrug-resistant *Pseudomonas aeruginosa* in a French university hospital

P. Cholley^{a,b}, H. Gbaguidi-Haore^{a,b}, X. Bertrand^{a,b,c}, M. Thouverez^{a,b}, P. Plésiat^{c,d}, D. Hocquet^{c,d}, D. Talon^{a,b,c,*}

	MDR-PA		
Patients		Within 48 h of	After 48 h
		admission	(mean period
			41 days)
654/60,454	38 (5.8%)	2	36
	12 different		
	PFGE patterns		
	(A to L)		


 Genotyping showed that cross-transmission was responsible for 70% of MDR *P. aeruginosa* cases

Microbes which are on the patient are able to spread the infection

) 20

Personnel in contact with these patients were the source...

of transmission of the micro-organisms to susceptible patients.

- Priority should be given to the improvement of standard hygienic precautions
- Antimicrobial rotation
- Restriction of certain agents

Consensus

- *P. aeruginosa* population is nonclonal epidemic
- clinical isolates are not distinguishable from environmental isolates
- no specific clones with a specific habitat or disease
 - Pirnay et al. PLoS One. 2009;4:e7740

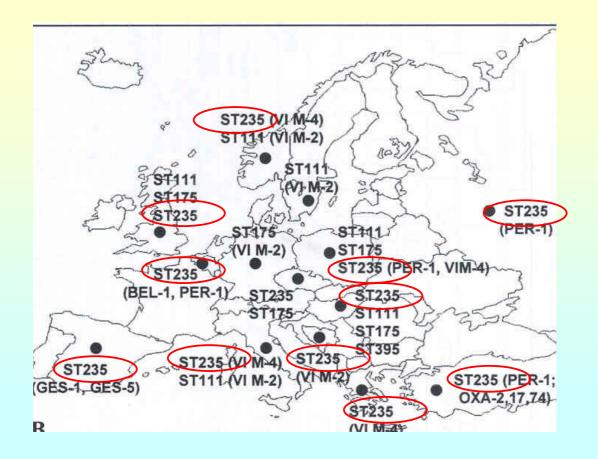
• The majority of multidruresistant *P*. *aeruginosa* isolates from hospitals belongs to a few clonal types

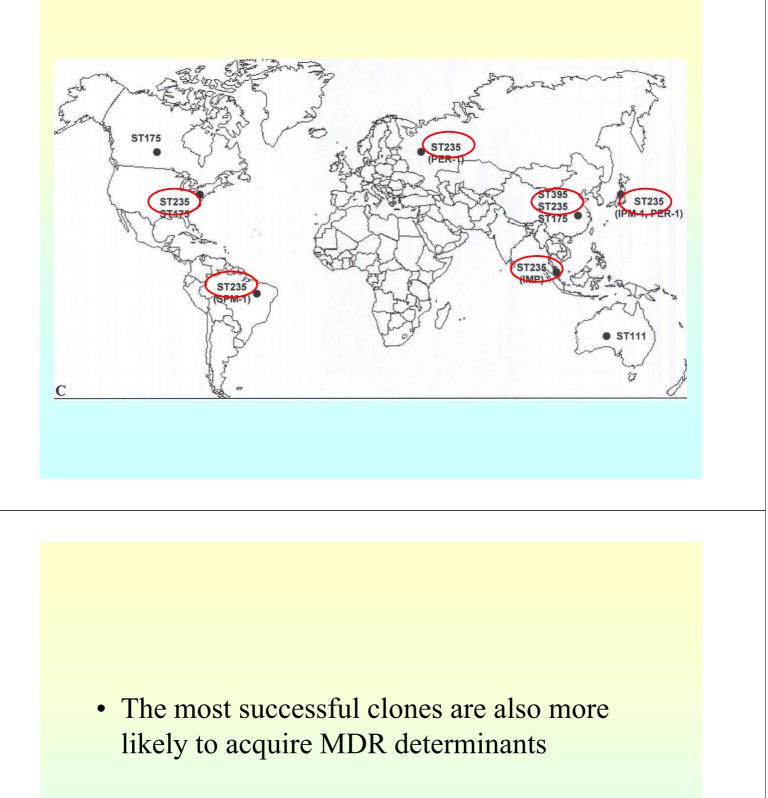
• Cholley *et al.*, 2010 (in press)

Multilocus sequence typing (MLST)

- Typing of multiple loci
- DNA sequences of internal fragments of multiple housekeeping genes
- 450-500 bp internal fragments of each gene used
- allelic profile or sequence type (ST)

Multilocus sequence typing (MLST)


- accumulation of nucleotide changes in housekeeping genes:
 - relatively slow process
 - stable over time
 - global epidemiology


MLST

- 187 MDR-PA isolates
- Nucleotides sequences were determined for internal fragments of the
 - *acsA*, *aroE*, *guaA*, *mitL*, *nuoD*, *ppsA* and *trpE* genes

MLST

- The majority of MDR isolates belongs to a few clonal types: ST235, ST111 and ST175
- ST 235 was the founder of the clonal complex CC235 (internationally distributed and already attributed to various ESBL)

Journal of Hospital Infection (2009) 73, 338-344

ScienceDirect

Available online at www.sciencedirect.com

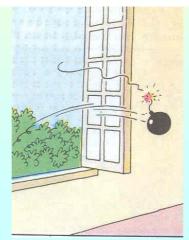
www.elsevierhealth.com/journals/jhin

REVIEW

Pseudomonas aeruginosa: a formidable and ever-present adversary

K.G. Kerr^{a,*}, A.M. Snelling^b

ANTIMICROBIAL RESISTANCE INVITED ARTICLE


George M. Eliopoulos, Section Editor

Multiple Mechanisms of Antimicrobial Resistance in *Pseudomonas aeruginosa:* Our Worst Nightmare?

David M. Livermore

Antibiotic Resistance Monitoring and Reference Laboratory, Central Public Health Laboratory, Colindale, London, United Kingdom

 Many thanks to Professor Xavier Bertrand and to the *Pseudomonas aeruginosa* team of Besançon